A Bayesian Model for Learning SCFGs with Discontiguous Rules
نویسندگان
چکیده
We describe a nonparametric model and corresponding inference algorithm for learning Synchronous Context Free Grammar derivations for parallel text. The model employs a Pitman-Yor Process prior which uses a novel base distribution over synchronous grammar rules. Through both synthetic grammar induction and statistical machine translation experiments, we show that our model learns complex translational correspondences— including discontiguous, many-to-many alignments—and produces competitive translation results. Further, inference is efficient and we present results on significantly larger corpora than prior work.
منابع مشابه
Bayesian Learning of Probabilistic Language Models
The general topic of this thesis is the probabilistic modeling of language, in particular natural language. In probabilistic language modeling, one characterizes the strings of phonemes, words, etc. of a certain domain in terms of a probability distribution over all possible strings within the domain. Probabilistic language modeling has been applied to a wide range of problems in recent years, ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملImprovements in Hierarchical Phrase-based Statistical Machine Translation
Hierarchical phrase-based translation (Hiero) is a statistical machine translation (SMT) model that encodes translation as a synchronous context-free grammar derivation between source and target language strings (Chiang, 2005; Chiang, 2007). Hiero models are more powerful than phrase-based models in capturing complex source-target reordering as well as discontiguous phrases, while being easier ...
متن کاملFinal Report of the 2010 Language Engineering
The last decade of research in Statistical Machine Translation (SMT) has seen rapid progress. The most successful methods have been based on synchronous context free grammars (SCFGs), which encode translational equivalences and license reordering between tokens in the source and target languages. Yet, while closely related language pairs can be translated with a high degree of precision now, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012